Machine Learning

DeResistor: Toward Detection-Resistant Probing for Evasion of Internet Censorship

Abstract: The arms race between Internet freedom advocates and censors has catalyzed the emergence of sophisticated blocking techniques and directed significant research emphasis toward the development of automated censorship measurement and evasion tools based on packet manipulation. However, we observe that the probing process of censorship middleboxes using state-of-the-art evasion tools can be easily fingerprinted by censors, necessitating detection-resilient probing techniques. We validate our hypothesis by developing a real-time detection approach that utilizes Machine Learning (ML) to detect flow-level packet-manipulation and an algorithm for IP-level detection based on Threshold Random Walk (TRW).

Augmenting Rule-based DNS Censorship Detection at Scale with Machine Learning

Abstract: The proliferation of global censorship has led to the development of a plethora of measurement platforms to monitor and expose it. Censorship of the domain name system (DNS) is a key mechanism used across different countries. It is currently detected by applying heuristics to samples of DNS queries and responses (probes) for specific destinations. These heuristics, however, are both platform-specific and have been found to be brittle when censors change their blocking behavior, necessitating a more reliable automated process for detecting censorship.